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SUMMARY 

A collocation method based on multiple regions with moving boundaries placed in a flow field in which 
convection effects dominate, is proposed. By making the moving boundaries of the regions coincide 
with moving sharp fronts present in the solution of convection dominated problems, and thereby 
allowing higher concentration of meshes to be placed about the fronts, the proposed method is able to 
achieve very high accuracy. By having a moving mesh, the Peclet number characterizing the flow field 
depends upon velocity relative to a moving mesh in a region. Consequently by choosing proper 
velocities of the moving boundaries, the value of this Peclet number can be made as small as desired. 
The traditional collocation method based on centred discretization, when applied to each region in the 
field, produces oscillation free solutions even when the values of Peclet number based on absolute 
velocity are extremely large. In view of these characteristics the method appears to be an excellent 
candidate for the solution of any two-phase flow problem containing sharp fronts. 
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INTRODUCTION 

Spline collocation schemes with optimum choice of collocation points have been very 
successful in obtaining very accurate solutions to diffusion dominated problems or problems 
in which diffusion is either greater, or of the same order as, convection.'" For convection- 
dominated flows with single-step time differencing (such as the Crank-Nicholson scheme) 
collocation schemes, like other numerical approaches (such as central finite-differencing7 and 
finite elements methods?) lead to oscillatory behavio~r .~ The present investigation shows 
that a collocation scheme with multistep time-differencing appears to yield oscillation free 
solutions for convection-dominated flows for significantly higher mesh Peclet numbers (PA) 
than has been possible previously with single-step time differen~ing.~ The stability limit is 
considerably higher than PA=2, which is typical of values for central finite-difference 
schemes. The present computations for the model diffusion problem using multistep time 
differencing show that for PA even up to 100, there appear to be no noticeable oscillations in 
the solution. However, as PA approaches higher values, the oscillations begin to appear. 

A number of alternative schemes have been proposed to remove these oscillations. Almost 
all of these rely on upstream weighting of the convection terms, for example the upstream 
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differencing of the convection term in the finite-difference method, and the use of asymmet- 
ric basis functions for collocation and finite-element These schemes are not very 
satisfactory as they tend to suppress oscillations by introducing artificial numerical diffusion 
and consequently they suffer from severe inaccuracies, particularly in problems which 
contain sharp moving fronts such as those due to the presence of shock waves, phase change 
or heterogeneous multiphase mixtures. 

In this paper a method is proposed to circumvent the problem of oscillations by requiring 
the effective mesh Peclet number to be small, or  making it approach zero. In the latter case, 
the problem effectively reduces to a pure diffusion problem. This is accomplished by dividing 
up the flow field into two or more regions. The choice of the actual number of regions will 
depend upon the heterogeneity of the media, and the level of variation of the fluid velocity 
and of various other dependent variables. If the boundaries of these regions are allowed to 
move relative to some fixed boundary with the local fluid or front velocity, then meshes 
placed in these regions also have motion relative to the fixed boundary. As a consequence of 
this, the velocity of the flow field relative to the moving mesh can be reduced to a very small 
value or can be made to approach zero so that the effective Peclet number based on this 
relative velocity can be made as small as necessary. The governing equations to be solved are 
transformed to these moving co-ordinates, the relevant mesh Peclet number is then based on 
fluid velocity relative to the local velocity of the mesh. Consequently this mesh Peclet 
number can be made as small as necessary to circumvent the appearance of undesirable 
oscillations and still be able to achieve the high order accuracy which is obtainable from 
centred discretization resulting from the use of a spline collocation scheme. This method is 
an extension of the moving co-ordinate method originally devised by O’Neill and Lynch’ for 
the solution of convective-diffusion problems using a finite-element method based on the 
Galerkin procedure. 

A similar approach was pursued in a paper by Jensen and Finlayson.”” These authors 
have considered the same problem using a moving mesh procedure with C1 cubic elements 
in an orthogonal collocation scheme and Crank-Nicholson time differencing. The present 
treatment differs from their work in two respects: (1) We have introduced the concept of a 
multiregional moving mesh scheme which not only allows the tracking of moving fronts in 
the media but can also deal with heterogeneity of the media, such as that which occurs in the 
presence of multiphase flows. (2) In addition, we have used multistep time differencing based 
on the so-called backward differentiation formulae as incorporated in the ODE solver 
package LSODI.12 This scheme in terms of accuracy, as already pointed out, has a significant 
advantage over the single-step Crank-Nicholson technique. This difference will be further 
highlighted by actual numerical examples. 

Related papers by Miller and Miller13 and by Miller14 also use moving co-ordinates, but 
are based on a finite-element method using the Galerkin procedure. The principal drawback 
of finite element methods based on the Galerkin or a weighted residual procedure is that 
these methods require evaluation of integrals by numerical quadrature at each time step and 
thus entail considerably more arithmetic, especially for a non-linear problem, as compared to 
a collocation method. 

FORMULATION OF THE METHOD 

Let us consider a general one-dimensional flow field as shown in Figure 1. Let 4 ( x ,  t )  be the 
dependent variable, such as concentration or temperature, containing sharp ‘fronts’ at a 

* The existence of this paper was pointed out to us by one of the referees, to whom we are very grateful. 
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Figure 1. Moving mesh co-ordinate system 
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number of locations in the field. Let us further assume that these fronts are moving to the 
right in the flow field with the velocity U of the flow. It is clear that computation of 4 with 
the conventional non-moving fixed grids would not be able to track moving fronts with any 
degree of satisfaction except with grid sizes which greatly exceed those that are theoretically 
necessary for normal engineering accuracy. To circumvent this difficulty, we divide the field 
into a number of regions. The boundaries of these regions coincide with the fronts in the 
distribution of 4 by allowing these boundaries to move with the velocities of these fronts. If 
a co-ordinate system is established relative to these moving boundaries of the regions, it is 
then possible to choose the distribution of mesh points such that it has a higher concentration 
about the fronts and is dispersively distributed elsewhere. Another principal advantage of 
this co-ordinate system, as we demonstrate below, is that if the equation governing 4 is 
expressed in this co-ordinate system the significant Peclet number is based on the velocity 
relative to the moving mesh rather than the absolute velocity U. 

Let x denote the co-ordinate relative to the fixed boundary at the left, as shown in Figure 
1, and let q’ denote the co-ordinate in the jth region, relative to the left moving boundary of 
the corresponding region, which is related to the fixed co-ordinate system through the 
expression 

(1) 
. x - jXjp1 + (j - l)Xj 

xi -xi-, q’ = for l S j S N  

where Xj is the non-dimensional (non-dimensionalized with reference length L )  co-ordinate 
of the right boundary of the jth region. 

Clearly, the transformation implies that in this relative co-ordinate system, the left 
boundary always lies at q’ = j -  1 and the right boundary at q i  = j. This transformation 
consequently immobilizes the boundaries of the region and, in turn, allows us to choose any 
desired distribution of the mesh points in a region. The dependent variable 4 can be written 
as 

which together with equation (1) yields 

4 ( x ,  t )  = 4(qJ(x, 0, t> (2) 
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Let us now consider a model convective-diffusion problem described by the following 
equations 

+(O, t*) = 1, 

+(x*, 0) = 0, 

t* 2 0  

0 < x* s L 

where U is the velocity, D is the diffusion coefficient, x* is the dimensional co-ordinate from 
the fixed origin and t* is dimensional time. Non-dimensionalization of equation (6a) yields 

where t = t*D/L2 and x = x*/L, Pe = ULID. 
The use of equations (3)-(5) in equation (7) yields 

which can be written as 

where 

Ue is the velocity of fluid relative to a moving point with co-ordinate q'. The Peclet number, 
Per based on this relative velocity can be made as small as desired by making a judicious 
choice for the velocity of the boundaries of a region. For example if & = &-, = Pe, then the 
Peclet number, Pe, for j > 1 becomes zero, and convective-diffusion problem (8b) reduces to 
a pure diffusion problem. As discussed previously, ample experience has accumulated with 
regard to the use of the collocation scheme with Gaussian quadrature points as collocation 
points for solving diffusion-type problems and it is well known that it provides very accurate 
solutions. As will be demonstrated subsequently, this scheme, in combination with multistep 
time-differencing provides more accurate solutions than other schemes, even at substantially 
large values of Peclet number. However, there is some overhead which results from the use 
of variable time steps and local truncation error control. 

Equation (8b) applies to the jth region. Across the boundaries between the regions, we 
require continuity of the values and of the fluxes of the dependent variable 4. These 
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For later use in the collocation method, we require the time derivatives of equations (6b), 
(10) and (6d) and rewrite them as 

q o ,  t )  = &o, t )  = 0 (1 1) a r  
Q(qj = j - ,  t )  - $(qj+l= j + ,  t )  = 0 (12) 

(13) : ( D 2  1,) - t ( D 2  IJ = O  

2 p (XN, t ) )  = 0 

xi - *-*-1 

1+1 4+1-4 

(14) 
at ax 

Transforming equations (13) and (14) to co-ordinate system qi, we obtain 

4'G-9 fFx ,  -& &j+, r) = 4'G+, t )  

$+1-$ 

x,+,-x, 4G-2 t) - 

$(N, t )  = o 
where the prime denotes a derivative with respect to q. 

COLLOCATION METHOD 

We shall seek an approximate solution of equations (8b), ( l l ) ,  (12), (15) and (16) by a 
collocation method, using cubic Hermite spline basis functions as approximating functions in 
the spatial variable qi for &(qi, t). More specifically, let the interval [i - 1, j ]  be divided by a 
set of points, called break points as 

j -  1 = q1<q2<. . . < ql+l = j ,  hi = q. I - q. 1-1 
where we have omitted the use of superscript j for convenience and will restore its use when 
necessary for clarity. A convenient basis for generating Hermite splines is the set 

P 

(0, otherwise 

(0, otherwise 
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It is assumed that the function Vl(q) and Sl(q) vanish to the left of ql and functions Vltl(q) 
and Sl+l(q) vanish to the right of ql+l. In addition, we note the following properties of the 
basis functions: 

1. Each K(q) and Si (q) is continuous together with its derivative in the domain [j - 1, j] with 

2. Each Vi and Si is a cubic (i.e. order k =4) polynomial in each subinterval, and they 
degree of smoothness, u = 2 .  

vanish outside the interval [ q i - 1 ,  qi+J 

3.  v, (qi )  = sij, v:(qi) = 0 
1 =s i, j ZS 1 + 1 

si(qi) = 0 , s:(qi) = aij' 
We now seek an approximate solution of equations (Sb), (ll), (12), (15) and (16) in terms 

of the cubic Hermite spline basis functions as 

where the coefficients of expansion {& i t ) ,  &(t)} ,  as follows from property 3 of hermite 
splines, are, respectively, the unknown values of the function +(q) and its spatial derivative 
at the break point qi with 1Si < 1 +  1; i.e. +i(t) = +(qi, t ) ,  +l(t)= +'(qi, t). In view of 
property 2 of these splines, expansion (18a) becomes 

j + l  

+(q, t ) =  C[+ii(t)Vi(q>++:(t)Si(q)l for q E ( q j 9  qjtd, with l s j s l  (18b) 
i = j  

The use of expansion (18) in equations (8b) gives 
j+l c ti$"'(t) v, (11") + &'"'(t>Si (q ")I 
i = j  

which holds for q E (qj, qj+l) with 1 < j  s I ,  and 1 m <A', superscript or subscript rn 
denotes the region number. The use of expansion (18) and property 3 of the basis functions in 
equation (6b) yields 

+ y ( t > O )  = 1, +:yo) = 0, 2 s q  s k  + 1 (204 

+$"yo) = 0,  2 s rn < N, 

The initial values of the coefficients representing derivatives at the breakpoints are deter- 
mined by fitting the profile given by equations (6b) and (6c). The use of expansion (18) and 
property 3 in equations ( l l ) ,  (12), (15) and (16) provide, respectively, 

1 < i ZS 1, + 1 

c$:"(t) = 0 (21) 

(22) @i1(t) - &m+l'(t) = 0,  1 < m G N 
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Equations (21)-(24) constitute 2N equations for an N region problem. The remaining 
unknown coefficients are determined by requiring equation (19) to be satisfied at a number 
of points in the field, called the collocation points equal to the n - 2N, where n is the total 
number of unknown coefficients given by 

N N 

n = 2  2 (Im+1)=2N+2 2 I, 
m = l  m = l  

In view of approximation t h e ~ r y l ~ . ~ ~  Gauss-Legendre quadrature points of order 2 are 
chosen as the collocation points in each subinterval (qy, qE1): 

Evaluating equation (19) at the above mentioned collocation points leads to the following set 
of non-linear ordinary differential equations: 

which holds for 

orqe(qy,  l<jsIm, l s q s - 2 ,  l < r n < N  

In addition, since we need a prescription for the motion of the moving boundaries of various 
regions, let us assume the following functional form for the motion of these boundaries 

Xm = fm (Pe, + ( m ) ( ~ r n ) ,  t ) ,  1 s rn s N (28a) 

Xm=Pe, l<m<N (28b) 

where function f is a known function. In the present problem, we have chosen 

Equations (21-24), (27) and (28) can be compactly written in the following functional form: 

A(Y, t ) Y  = G(Y, t) (29) 

where Y is an (n + N )  dimensional vector of n unknown coefficients and N co-ordinates of 
the moving boundaries. The coefficient matrix A(Y, t) is a banded matrix of bandwidth equal 
to 2k-1. 

COMPUTATIONAL DETAILS 

The solution of equation (29) is obtained by the standard library routine LSODI,I2 which 
solves the initial value problem with a banded coefficient matrix. It obtains the solution of a 
linearly implicit system of first order ODES by Gear's multistep 'time-differencing' al- 
gorithm. Because of this algorithm, the only way one can control the time step is by varying 
allowable error tolerances for the integrator. This in turn implies that one cannot preselect a 
value of the time step or a value of the Courant number. The only other parameter that we 
have direct control of is the Peclet number Pe = UL/D or the mesh Peclet number, 
Pa = UAx*/D which characterizes the original problem defined by equations (6)  and (7) in 
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Figure 2.  A comparison of fixed grid solution with analytical solution at PA = 100 

the fixed co-ordinate system. We may note that equations (8b) reduces to equation (7) if we 
set % = O  for I s j < N = l .  

The characteristics of equation (8b) for a fixed mesh are studied by varying PA over a wide 
range. Figure 2 shows a plot of 4 with PA= 100 with the solution obtained for the case of a 
fixed grid, uniform mesh distribution using multistep time-differencing. The solution for 4 is 
compared with the analytical solution. As the Figure shows, there appears to be very little 
noise or oscillations in the computed solution; for all practical purposes this noise can be 
neglected. This is distinctly different from the results obtained by ONeill and Lynch* who 
found with the finite-element method using single-step time differencing, that the solution 
contained significant oscillations at PA = 100. In fact the solution obtained by Pinder and 
Shapiro’ with the same collocation method but using single-step time differencing contained 
oscillations even at PA = 54. It then appears that multistep time differencing with appropriate 
selection of time steps considerably improves the stability characteristics of the collocation 
method for the convective-diffusion problem. The extra accuracy obtainable by the use of 
multistep time differencing as incorporated in LSODI is not without extra cost. The ODE 
package requires for solution of 82 ODES ( 1  = 40) an extra storage (in addition to what may 
be required for single-step time differencing) of about 15 Kbytes for various auxiliary arrays 
used for working storage. In addition, the time steps by the LSODI integrator are signific- 
antly smaller than the time steps used in the Crank-Nicholson scheme. For example, in the 
above computations for PA = 100, and the relative local time truncation error, E = the 
Courant number ranged from 0.002 to 0.126 with an average value of about 0.098 (for a 
total number of steps = 342) as against a value of 0.369 used by Pinder and Shapiro’ in their 
calculations at PA = 54. The total CPU time on an IBM 3033 computer system was about 
25 s in a time sharing environment. 
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Figure 3. A comparison of fixed and moving grid solutions with analytical solution at PA = 400 
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Figure 5 .  A comparison of fixed and moving grid solutions with analytical solution at PA = 2402 

However, as PA was increased to a value of 400, the solution for the fixed grid began to 
display oscillations, as can be seen in Figure 3.  Also shown in this Figure is the solution 
obtained with moving co-ordinates having the same number of mesh points as the fixed grid 
case; however in the latter case, N was chosen equal to 2 and the mesh was distributed with 
higher concentration about the right/left boundary of the firstlsecond region. The velocities 
of the moving boundaries were chosen equal to  the fluid velocity U. The initial length of the 
first region was chosen such that the front was almost always near the left boundary of region 
2 and therefore allowed the higher concentration of nodes to be placed right about the front. 
These features, together with the fact that the value of the characteristic Peclet number is 
reduced considerably by having moving co-ordinates, lead to an oscillation-free solution, as 
can be seen in Figure 3 .  As expected, the oscillations should increase in magnitude as PA 
takes on high values. For example, with PA having values 1201 and 2402, Figures 4 and 5 ,  
respectively, show considerable deterioration of the solution with the fixed grid collocation 
method. However, the moving mesh method with the same number of meshes but a 
non-uniform distribution, once again produces an oscillation-free solution which agrees 
extremely well with the analytical solution for both values of PA. 

CONCLUSIONS 

The computational results presented for a very wide range of values for the mesh Peclet 
number clearly demonstrate the distinct advantages of this moving mesh collocation method 
over the fixed grid method. The moving mesh method takes advantage of the inherent high 
accuracy available from the use of the collocation method with the optimum choice of 
collocation points and multistep time differencing. The traditional fixed grid collocation 
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method has been used extensively for the solution of non-linear problems in which diffusion 
or radiation effects dominate (see for example references 1-6). It is therefore expected that 
with the moving mesh collocation method one should be able to deal with any non-linear 
problem in which convection effects dominate. In addition, the solution of two-phase flow 
problems which offer a considerable challenge to traditional low-order finite-diff erence 
methods based on donor-cell type schemes, should be well suited for the moving mesh 
collocation method. Although no attempt has been made by the authors to extend these 
calculations to two-dimensional problems, Jensen” has performed such a calculation with 
very satisfactory results. 
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